Cost-effectiveness of antithrombotic agents for atrial fibrillation in

older adults at risk of falls

Eric KC Wong1,2 Christina Kosar2 David Naimark2,3 Sharon E Straus1,2 Harindra C Wijeysundera2,4

- 1. Knowledge Translation Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, Ontario, M5B 1W8, Canada
- 2. Institute for Health Policy Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
- 3. Division of Nephrology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
- 4. Division of Cardiology and Cardiac Surgery, Schulich Heart Centre, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada

Funding: The study had no direct funding support. Dr. Wong is supported by the Clinician Scientist Training Program at the University of Toronto, the Vanier Scholarship from the Canadian Institutes of Health Research, and the Knowledge Translation Program at St. Michael's Hospital. Dr. Straus is supported by a Tier 1 Canada Research Chair. Dr. Wijeysundera is supported by a Phase 2 Clinician Scientist award from the Heart and Stroke Foundation of Canada, Ontario Office.

<u>Competing interests</u>: The authors have no competing interests to declare.

Abstract (245 out of 250 words)

Background

Atrial fibrillation (AF) is a common cardiac condition in older adults that results in an increased risk of stroke. Antithrombotic agents decrease stroke risk associated with AF but increase bleeding risk. Falls are common in older adults and increase their bleeding risk. The purpose of this study was to determine the most cost-effective anticoagulant for older adults with AF at high risk of falling.

Methods

Using a probabilistic microsimulation Markov decision model, quality-adjusted life years (QALYs), total cost, and incremental cost-effectiveness ratios (ICERs) were calculated for each medication (ASA, warfarin, apixaban, dabigatran, rivaroxaban, and edoxaban) based on a distribution of older adults at risk of falls with atrial fibrillation. The analysis used the Ontario (Canada) public payer perspective in a lifetime horizon, and it was validated externally with published cohorts.

Results

The most cost-effective antithrombotic therapy for atrial fibrillation in older patients at risk of falls is apixaban, with an ICER of C\$8,621 per QALY gained (5.92 QALYs at C\$94,304) over ASA. It is a dominant strategy over warfarin and other antithrombotic agents. ASA had the lowest cost (C\$86,197), but was also least effective (4.98 QALY) compared to the other medications. There was little uncertainty in the ranking with apixaban as preferred choice in 97% of model iterations.

Interpretation

From a public payer perspective, apixaban is the most cost-effective antithrombotic in older individuals at high risk of falls. Healthcare funders should implement strategies to encourage use of the most cost-effective medication in this population.

Page 4 of 37

Introduction

Atrial fibrillation (AF) is a common heart dysrhythmia that increases with age [1]. AF increases stroke risk due to abnormal atrial tissue substrate and stasis from contractile dysfunction [2]. Anticoagulants are used to prevent stroke in patients with AF, but these medications increase bleeding risk [3]. AF prevalence [1], stroke risk [4], and bleeding risk [5,6] all increase with age. Furthermore, older adults are often at increased risk of falling and head injury, which can lead to serious bleeding on anticoagulation [7]. The fear of causing major bleeding leads to under-prescribing of anticoagulants in older patients, particularly those with a high risk of falling [8].

A decision analysis study published in 1999 showed that warfarin was preferred (12.90 quality-adjusted life years [QALYs]) over aspirin (11.17 QALYs) or no treatment (10.15 QALYs) for AF in those at risk of falls [9]. The more recent direct oral anticoagulants (DOACs), including dabigatran, rivaroxaban, apixaban, and edoxaban, offer generally lower bleeding risk than warfarin, but similar or lower stroke risk [10]. The DOACs are economically attractive compared to warfarin in the general population [10], but how these risks apply to an older population with falls is uncertain. Older adults with AF and falls have both higher stroke and bleeding risk, so the individual risk and efficacy of the DOACs need to be evaluated in this population.

Decision models incorporate event probabilities, trade-offs, utilities and costs to compare
costs and clinical outcomes of treatment choices for a population [11]. We used a decision model
to compare warfarin, aspirin, and the four DOACs for their cost-effectiveness in older adults
with AF and a high risk of falls using the Ontario, Canada public health care payer perspective.

1 2		
4 5 6 7 8 9 10 11 12 13	23	
	24	Methods
	25	Model structure
14 15 16	26	A health state transition (Markov) model running a two-dimensional Monte Carlo
17 18	27	simulation (microsimulation with probabilistic sensitivity analysis [12]) was constructed in
19 20	28	TreeAge Pro 2019 (TreeAge Software Inc., Williamstown, MA) to compare the different
21 22 22	29	antithrombotic agents for atrial fibrillation. Model variables were selected from distributions
23 24 25	30	(outer-loop or second-order iterations) to determine the sensitivity of model output to the fact
26 27	31	that variable estimates are measured with a degree of uncertainty, while hypothetical patients'
28 29	32	characteristics were simulated in inner-loop (first-order) iterations. Sampling individual patient
30 31 32	33	characteristics allows the probability of transition among various health states to depend on those
32 33 34	34	characteristics.
35 36 27	35	The analysis involved a simulated cohort of older adults with non-valvular atrial
37 38 39	36	fibrillation at high risk of falls, with distributions of age, sex, stroke risk (using CHADS score
40 41	37	[13]), bleeding risk (using HAS-BLED score [14]), and falls risk. The base case age, sex, and
42 43	38	falls risk distributions were derived from the Tinetti falls study (Table 1) [15], which included a
44 45 46	39	cohort of older adults at risk of falls. The base case CHADS and HAS-BLED scores were
40 47 48	40	derived from an AF trial population [16]. The cycle length was 3 months with a life-time time
49 50	41	horizon. Perspective of the analysis was from the public health care system third-party payer, the
51 52	42	Ontario Ministry of Health and Long Term Care. Discounting at 1.5% was applied to both cost
53 54 55 56 57	43	and utilities based on the current Canadian Agency for Drugs and Technologies in Health
58 59		2

2		
3 4	44	(CADTH) guidelines [17]. Within-cycle correction was used to compensate for biases occurring
5 6	45	with discrete (non-random) Markov health transitions [18,19]. The results were reported in
7 8	46	accordance with the CHEERS statement [20].
9 10	47	
11		
12 13 14	48	Strategies
16 17	49	The strategies included the following antithrombotic options available on the Canadian
18 19 20	50	market as of January 2020:
20 21 22	51	1. Aspirin (ASA) <150mg daily
23 24	52	2. Warfarin titrated to INR (international normalized ratio) 2–3
25 26	53	3. Apixaban 5mg twice daily
27 28	54	4. Dabigatran 150mg twice daily
29 30 31	55	5. Rivaroxaban 20mg once daily
32 33	56	6. Edoxaban 60mg once daily
34 35	57	
36 37	58	Clinical practice guidelines [21,22] recommend that older adults with atrial fibrillation
38 39	50	should get an antithromhotic agent for stroke prophylaxis, so we did not simulate a "no
40 41	29	should get an antitinomobile agent for subke prophylaxis, so we did not simulate a mo
42 43	60	treatment" strategy.
44 45	C1	
45 46	61	
47		
48 ⊿q	62	Outcomes
50	02	Outcomes
51		
52 53	63	For each inner loop iteration (simulated individual), health gains were expressed as life
54	64	years (LV) and quality-adjusted LV ($\Omega \Delta LV_s$) the latter to account for both survival and quality
55 56	04	years (E1) and quanty-adjusted E1 (QAE13), the fatter to account for both survival and quanty
57		
58		
59		3 For Peer Review Only
60		TO FEEL NEW ONLY

Page 7 of 37

of life, and costs were calculated as total lifetime costs. For both OALYs and costs, averages were computed across inner-loop iterations and, in turn, grand averages were calculated by averaging the inner loop averages across the outer loop iterations. Pairs of strategies were compared by calculating the incremental cost effectiveness ratio (ICER) as the difference in the grand averages of costs divided by the difference in grand averages of QALYs. ICERs were calculated by ranking all the strategies by lowest to highest cost. A pair of strategies consisted of a given strategy and the strategy with the next lowest cost. If the option with the higher cost had a lower effectiveness, it was considered to be directly dominated. We also considered ordered triplets of strategies to determine extended dominance. If the effectiveness of the middle strategy of a triplet could be achieved less expensively by a combination of the two neighboring strategies, the middle strategy was considered to be dominated by extension. We calculated numerical ICERs only for non-dominated strategies. The willingness-to-pay (WTP) threshold for this analysis was set at an ICER below C\$50,000/QALY based on commonly accepted threshold range in Canada [23,24]. Secondary outcomes included life expectancy, cumulative major stroke, cumulative major bleeding, cumulative bedbound, and duration of time off medication.

81 Health states

A sample structure of the decision tree is shown in Figure 1. Simulated patients started in the
"alive" health state and transitioned to the others when events were encountered (Figure 2).
Stroke, bleed, and fall events were captured using tracking variables, which were used to
calculate costs and utilities.

1. Alive: simulated patients in the "alive" health state can transition to "bedbound" state if they have a severe bleed or stroke, leading to severe disability with a modified Rankin

score of 5 [25]. Patients could also die from one of the events in the model or from other reasons based on age-adjusted mortality rates.

- 2. **Bedbound**: patients in the "bedbound" state remained in this state until death, but they can still experience a stroke or bleed. To simplify the model, we assumed that those who were bedbound did not experience further falls.
- 3. **Dead:** patients who died exited the simulation.

For adults with a major bleed, antithrombotics were discontinued for 3 months in the simulation, which is a conservative duration allowing for minimal bleeding risk [26,27]. We chose the most effective (highest) doses of each medication for the stroke prevention analysis. Patients were assumed to be adherent to the study medication with no discontinuation, but variation in adherence and effectiveness was accounted for in the model because the efficacy 97. 1. estimates were provided as ranges.

Model probabilities, cost and utilities

A targeted literature search (MEDLINE) was completed to obtain baseline probabilities and utilities for events related to stroke, bleeding and falls (Table 2). The baseline mortality rate for each age was derived from Statistics Canada Ontario life tables [28]. Appropriate distributions were created for each variable for outer-loop sampling. A detailed description of the model variables is available in the supplementary appendix S1.

The probability of falls, stroke (major/minor), bleed (major/minor), and mortality were derived from published trial or cohort estimates (Table 2). Drug efficacy and safety variables were obtained from a network meta-analysis comparing all medications (Table 3) [10]. Costs

related to falls, stroke, and bleed were derived from Canadian estimates [29,30]. Medication costs were obtained from the Ontario Drug Benefits Formulary and local pharmacy [31]. Indirect costs of warfarin therapy including blood monitoring and clinic visits were accounted for [32]. Cost data were adjusted for inflation to 2018 values using the Bank of Canada Consumer Price Index [33]. Utilities were derived from published estimates. All individuals entering the cohort began with the utility of having AF [34]. The utility of stroke or bleed was factored into the existing utility when those events occurred. Minor stroke, minor bleed, or a fall was associated with a disutility for a defined period of time, but not permanently.

120 Model Analysis

Distributions were sampled using published point estimates along with measures of variance. Variables that did not have variability (e.g. fixed costs) were inputted without distributions. The simulation for each patient terminated when death occurred or when the patient reached 100 years of age. The number of outer and inner loop iterations required for the main analysis were determined empirically according to stability of ICER and average cost estimates by running samples of different number of outer or inner loops while holding the other constant. The lowest number of outer and inner loops that resulted in stable average values was determined to be 10,000 and 5000, respectively. Residual uncertainty was explored using value of information analysis (methods and results in Supplementary appendix S2).

Model verification and validity

ulting experts in
re as a falls and
grammers that
TreeAge
y comparing
ohorts.
e 4). In
e-time cost at
omes are shown
st with ASA (7.45
igatran and
th dabigatran
average of 3.49
e proportion of
e was similar
e wa

across the medications with lowest proportions in those receiving apixaban (2.4%) or dabigatran(2.1%).

When listed by increasing life-time cost, the most economically attractive strategy was apixaban with 5.92 OALYs, and cost of C\$94.304 and an ICER of C\$5.036 per OALY gained compared to warfarin. Warfarin had an ICER of C\$27,088 per QALY gained compared to ASA, and as such was extendedly dominated by apixaban (Figure 3). When warfarin was removed, apixaban had an ICER C\$8,621 per QALY gained over ASA (Table 4). Edoxaban, rivaroxaban and dabigatran were dominated with negative ICERs and lower QALYs compared with apixaban. When variable uncertainty was explored, apixaban was the preferred strategy in 97% of

the iterations given a WTP of C\$50,000 (Figure 4). ASA was the dominant strategy if the WTP
threshold was below C\$8,621. The incremental cost-effectiveness plots show a positive trade-off
or dominance of apixaban over ASA or warfarin (Supplementary figure S2). Overall uncertainty
was progressively reduced as the WTP approached C\$50,000 (Supplementary figure S1).

165 Interpretation

This health state transition model found apixaban to be the preferred strategy for stroke prevention in older patients with AF and increased falls risk from a public payer perspective. The overall reduction in stroke and bleeding events led to a favourable QALY despite slightly higher lifetime costs of apixaban versus warfarin (C\$94,304 vs. C\$90,338). Apixaban had the lowest bleeding risk of all the DOACs. Since the main consequence of frequent falling is a bleeding event, it is clinically plausible that apixaban is most cost-effective.

> A cost-effectiveness analysis from the United Kingdom National Health Service perspective found apixaban to be the dominant strategy for the general AF population using a WTP threshold of £20,000 [10]. Dabigatran had a lower lifetime cost overall in that study, likely due to the lower risk of bleeding in a population without falls risk. Although the original decision analysis by Man-Son-Hing et al. did not include costs [9], our findings are similar in that anticoagulation is preferred over ASA.

Our analysis builds on prior knowledge that not only is anticoagulation warranted, but apixaban is the most economically attractive choice for stroke prophylaxis in older patients with AF. The model reveals little uncertainty that apixaban is the optimal choice (Figure 4). There is little to be gained by performing more research in identifying an optimal anticoagulant for this population (Supplementary figure S1). Rather, research should be directed to implementation of the appropriate anticoagulant medication to this population, which will save cost and confer greater effectiveness over the other medications.

There are several limitations to this model. First, the model was specific to individuals who have AF at risk of falls. Simulated patients remained at elevated fall risk throughout the model despite the risk of falls decreasing after 12 months without a subsequent fall [48]. Second, individuals can only fall once per cycle, and they can no longer fall once they become bedbound. Third, patients were limited to the use of one medication in the model and assumed to be adherent to the drug. Patients could not discontinue or transition to another medication with a bleeding event, and medication compliance was not factored into the analysis. Finally, we only simulated the most effective dose (based on stroke reduction) of the medication when more than one dose was available.

Page 13 of 37

2 3 4	194	Our model has a number of strengths. First, the model simulated a population of older
5 6	195	adults at risk of falls with varying stroke and bleeding risks, in the absence of direct clinical trial
7 8	196	evidence in this population. The model was fully probabilistic, so reasonable variations in all the
9 10 11	197	model variables were tested instead of doing sensitivity analysis in only certain variables.
12 13	198	Second, we used efficacy data from a recent systematic review and network meta-analysis that
14 15 16	199	compared all of the pharmacologic treatment strategies available on the Canadian market,
10 17 18	200	including ASA and warfarin. The model included the new anticoagulant edoxaban in anticipation
19 20	201	of ODB formulary approval. Third, we included indirect costs of warfarin therapy, including
21 22 23	202	bloodwork for monitoring and clinical visits, as well as Canadian cost estimates for falls, strokes
24 25	203	and bleeds. Finally, the model was validated externally using large population cohorts.
26 27	204	The model provides guidance to the Ministry of Health and Long-Term Care in Ontario
28 29 30	205	for which medication is ideal for older adults with AF and falls. The last study published in 2015
31 32	206	showed a growing trend for apixaban and rivaroxaban prescriptions in Canada for any indication
33 34	207	[49], but more recent data are not publicly available. Future studies can investigate whether low-
35 36 37	208	dose (2.5mg) apixaban will reduce bleeding risk more than the standard dose (5mg) in this
37 38 39	209	population [50]. The findings from this study should be translated to policies that encourage the
40 41	210	use of apixaban for this population over warfarin, ASA or other DOACs.
42 43	211	
44 45 46	212	
47 48	213	
49 50 51		
52 53		
54 55		
56 57 58		
59 60		10 For Peer Review Only

References [1] Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, et al. Lifetime risk for development of atrial fibrillation: The framingham heart study. Circulation 2004;110:1042-6. doi:10.1161/01.CIR.0000140263.20897.42. [2] Kamel H, Okin PM, Elkind MSV, Iadecola C. Atrial Fibrillation and Mechanisms of Stroke: Time for a New Model. Stroke 2016;47:895–900. doi:10.1161/STROKEAHA.115.012004. [3] Atrial Fibrillation Investigators. Risk Factors for Stroke and Efficacy of Antithrombotic Therapy in Atrial Fibrillation: Analysis of Pooled Data From Five Randomized Controlled Trials. Arch Intern Med 1994;154:1449-57. doi:10.1001/archinte.1994.00420130036007. [4] Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, et al. The lifetime risk of stroke: Estimates from the framingham study. Stroke 2006;37:345-50. doi:10.1161/01.STR.0000199613.38911.b2. [5] Fang MC, Go AS, Hylek EM, Chang Y, Henault LE, Jensvold NG, et al. Age and the risk of warfarin-associated hemorrhage: The anticoagulation and risk factors in atrial fibrillation study. J Am Geriatr Soc 2006;54:1231-6. doi:10.1111/j.1532-5415.2006.00828.x. [6] An SJ, Kim TJ, Yoon BW. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: An update. J Stroke 2017;19:3–10. doi:10.5853/jos.2016.00864. Reddy S, Sharma R, Grotts J, Ferrigno L, Kaminski S. Incidence of intracranial [7] hemorrhage and outcomes after ground-level falls in geriatric trauma patients taking preinjury anticoagulants and antiplatelet agents. Am Surg 2014;80:975-8. Sen S, Dahlberg KW. Physician's fear of anticoagulant therapy in nonvalvular atrial [8] fibrillation. Am J Med Sci 2014;348:513–21. doi:10.1097/MAJ.00000000000349. Man-Son-Hing M, Nichol G, Lau A, Laupacis A. Choosing antithrombotic therapy for [9] elderly patients with atrial fibrillation who are at risk for falls. Arch Intern Med 1999;159:677-85. doi:10.1001/archinte.159.7.677. López-López JA, Sterne JAC, Thom HHZ, Higgins JPT, Hingorani AD, Okoli GN, et al. [10] Oral anticoagulants for prevention of stroke in atrial fibrillation: Systematic review, network meta-Analysis, and cost effectiveness analysis. BMJ 2017;359. doi:10.1136/bmj.j5058. Owens DK, Whitlock EP, Henderson J, Pignone MP, Krist AH, Bibbins-Domingo K, et [11] al. Use of Decision Models in the Development of Evidence-Based Clinical Preventive Services Recommendations: Methods of the U.S. Preventive Services Task Force. Ann Intern Med 2016;165:501. doi:10.7326/M15-2531. [12] O'Hagan A, Stevenson M, Madan J. Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA. Health Econ 2007;16:1009-23. doi:10.1002/hec.1199. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of [13] clinical classification schemes for predicting stroke: Results from the National Registry of Atrial Fibrillation. J Am Med Assoc 2001;285:2864-70. doi:10.1001/jama.285.22.2864. Apostolakis S, Lane DA, Guo Y, Buller H, Lip GYH. Performance of the HEMORR 2 [14] HAGES, ATRIA, and HAS-BLED bleeding risk-prediction scores in patients with atrial fibrillation undergoing anticoagulation: The AMADEUS (Evaluating the use of SR34006 compared to warfarin or acenocoumarol in patients with atrial fibrillation) study. J Am Coll Cardiol 2012;60:861-7. doi:10.1016/j.jacc.2012.06.019.

2			
3	261	[15]	Tinetti ME, Speechley M, Ginter SF. Risk Factors for Falls among Elderly Persons Living
4	262		in the Community. N Engl J Med 1988;319:1701–7.
5	263		doi:10.1056/NEJM198812293192604.
7	264	[16]	Lopes RD, Al-Khatib SM, Wallentin L, Yang H, Ansell J, Bahit MC, et al. Efficacy and
8	265		safety of apixaban compared with warfarin according to patient risk of stroke and of
9	266		bleeding in atrial fibrillation: A secondary analysis of a randomised controlled trial.
10	267		Lancet 2012:380:1749–58 doi:10.1016/S0140-6736(12)60986-6
11	268	[17]	CADTH Guidelines for the Economic Evaluation of Health Technologies. Canada 4th
12	269	[1,]	edition Ottawa Canada: 2017
13	205	[18]	Naimark DML Bott M Krahn M The Half-Cycle Correction Explained: Two Alternative
14	270	[10]	Padagogical Approaches Mad Decis Mak 2008-28:706 12
15	271		d_{0} :10 1177/0272080V082152/1
10	272	[10]	401.10.11///02/2909A00515241. Naimark DML Kabbaul NN Krahn MD. The Half Cycle Correction Devisited Med
18	275	[19]	Daria Male 2012:22:061 70 dai:10.1177/0272080V12501558
19	274	[20]	Decis Mar 2015;55:901–70. doi:10.11/7/0272989A15501558.
20	275	[20]	Husereau D, Drummond M, Petrou S, Carswell C, Moner D, Greenberg D, et al.
21	276		Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement.
22	2//	[01]	BMJ 2013;346. doi:10.1136/bmj.11049.
23	2/8	[21]	Andrade JG, Verma A, Mitchell LB, Parkash R, Leblanc K, Atzema C, et al. 2018
24	279		Focused Update of the Canadian Cardiovascular Society Guidelines for the Management
25 26	280		of Atrial Fibrillation. Can J Cardiol 2018;34:1371–92. doi:10.1016/j.cjca.2018.08.026.
20 27	281	[22]	Lip GYH, Banerjee A, Boriani G, Chiang C en, Fargo R, Freedman B, et al.
28	282		Antithrombotic Therapy for Atrial Fibrillation: CHEST Guideline and Expert Panel
29	283		Report. Chest 2018;154:1121–201. doi:10.1016/j.chest.2018.07.040.
30	284	[23]	Pandey H, Paulden M, McCabe C. Theoretical models of the cost-effectiveness threshold,
31	285		value assessment, and health care system sustainability. Edmonton, Alberta.: 2018.
32	286		doi:978-1-926929-89-7.
33	287	[24]	Laupacis A, Feeny D, Detsky AS, Tugwell PX. How attractive does a new technology
34	288		have to be to warrant adoption and utilization? Tentative guidelines for using clinical and
35	289		economic evaluations. CMAJ 1992;146:473–81.
30 37	290	[25]	Van Swieten JC, Koudstaal PJ, Visser MC, Schouten H, Van Gijn J. Interobserver
38	291		agreement for the assessment of handicap in stroke patients. Stroke 1988;19:604–7.
39	292		doi:10.1161/01.STR.19.5.604.
40	293	[26]	Colantino A Jaffer AK Brotman DJ Resuming anticoagulation after hemorrhage. A
41	294	[=•]	practical approach Cleve Clin I Med 2015.82.245–56 doi:10.3949/ccim 82a 14047
42	295	[27]	Majeed A Kim YK Roberts RS Holmström M Schulman S Optimal timing of
43	296	[2,]	resumption of warfarin after intracranial hemorrhage. Stroke 2010:41:2860–6
44	290		doi:10.1161/STROKEAHA 110.593087
45 46	207	[28]	StatCan Life Tables Canada Provinces and Territories 1980/1982 to 2014/2016 Ottawa
40 47	200	[20]	Canada: 2018
48	200	[20]	Canada, 2010. SMAPTPISK The Economic Purden of Injury in Canada, Terente, Canada, 2000
49	201	[20]	Singh SM Migiali A Wijayaundara HC Economia avaluation of naroutanaous left strial
50	202	[30]	Singh Sivi, Michell A, wijeysundera HC. Economic evaluation of percutations in actionate with
51	302		appendage occlusion, dabigatran, and warrarin for stroke prevention in patients with
52	303		nonvalvular alrial librillation. Circulation $2015;127:2414-25$.
53	304	[21]	doi:10.1161/CIRCULATIONAHA.112.000920.
54	305	[31]	Ontario Drug Benefits Program. Ontario Drug Benefit Formulary/Comparative Drug
55 54	306		Index 2019. https://www.formulary.health.gov.on.ca/formulary/ (accessed January 9,
20 57			
58			
59			12
60			For Peer Review Only

1			
2	207		
4	307	[20]	
5	308	[32]	Schulman S, Anderson DR, Bungard IJ, Jaeger I, Kahn SR, Wells P, et al. Direct and
6	309		indirect costs of management of long-term warfarin therapy in Canada. J Thromb
7	310	[22]	Haemost 2010;8:2192–200. doi:10.1111/j.1538-7836.2010.03989.x.
8	311	[33]	Bank of Canada. Inflation Calculator n.d.
9 10	312		https://www.bankofcanada.ca/rates/related/inflation-calculator/ (accessed January 9,
10	313	52.43	
12	314	[34]	Tengs TO, Wallace A. One thousand health-related quality-of-life estimates. Med Care
13	315		2000;38:583–637. doi:10.1097/00005650-200006000-00004.
14	316	[35]	Rao MP, Vinereanu D, Wojdyla DM, Alexander JH, Atar D, Hylek EM, et al. Clinical
15	317		Outcomes and History of Fall in Patients with Atrial Fibrillation Treated with Oral
16	318		Anticoagulation: Insights From the ARISTOTLE Trial. Am J Med 2018;131:269-275.e2.
17	319		doi:10.1016/j.amjmed.2017.10.036.
10	320	[36]	Bahit MC, Lopes RD, Wojdyla DM, Held C, Hanna M, Vinereanu D, et al. Non-major
20	321		bleeding with apixaban versus warfarin in patients with atrial fibrillation. Heart
21	322		2017;103:623–8. doi:10.1136/heartjnl-2016-309901.
22	323	[37]	Granger CB, Alexander JH, McMurray JJV, Lopes RD, Hylek EM, Hanna M, et al.
23	324		Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981–
24	325		92. doi:10.1056/NEJMoa1107039.
25 26	326	[38]	Asuzu D, Nystrom K, Amin H, Schindler J, Wira C, Greer D, et al. Modest association
20	327		between the discharge modified rankin scale score and symptomatic intracerebral
28	328		hemorrhage after intravenous thrombolysis. J Stroke Cerebrovasc Dis 2015;24:548–53.
29	329		doi:10.1016/j.jstrokecerebrovasdis.2014.09.034.
30	330	[39]	Van Staa TP, Setakis E, Di Tanna GL, Lane DA, Lip GYH. A comparison of risk
31	331		stratification schemes for stroke in 79 884 atrial fibrillation patients in general practice. J
32	332		Thromb Haemost 2011;9:39–48. doi:10.1111/j.1538-7836.2010.04085.x.
33 34	333	[40]	Acciarresi M, Paciaroni M, Agnelli G, Falocci N, Caso V, Becattini C, et al. Prestroke
35	334		CHA2DS2-VASc Score and Severity of Acute Stroke in Patients with Atrial Fibrillation:
36	335		Findings from RAF Study. J Stroke Cerebrovasc Dis 2017;26:1363–8.
37	336		doi:10.1016/j.jstrokecerebrovasdis.2017.02.011.
38	337	[41]	Olavarría V V., Brunser A, Cabral N, Martins S, Muñoz-Venturelli P, Cavada G, et al.
39	338		The distribution of the modified Rankin scale scores change according to eligibility
40	339		criteria in acute ischemic stroke trials: A consideration for sample size calculations when
41 42	340		using ordinal regression analysis. Contemp Clin Trials Commun 2017;5:133–6.
43	341		doi:10.1016/j.conctc.2017.01.008.
44	342	[42]	Benjamin EJ, Wolf PA, D'Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of
45	343		atrial fibrillation on the risk of death: The Framingham Heart Study. Circulation
46	344		1998;98:946–52. doi:10.1161/01.CIR.98.10.946.
47	345	[43]	De Caterina R, Connolly SJ, Pogue J, Chrolavicius S, Budaj A, Morais J, et al. Mortality
48	346		predictors and effects of antithrombotic therapies in atrial fibrillation: Insights from
49 50	347		ACTIVE-W. Eur Heart J 2010;31:2133–40. doi:10.1093/eurheartj/ehq250.
51	348	[44]	Eriksson M, Norrving B, Terént A, Stegmayr B. Functional outcome 3 months after stroke
52	349		predicts long-term survival. Cerebrovasc Dis 2008;25:423–9. doi:10.1159/000121343.
53	350	[45]	Ontario Long Term Care Association. About long-term care in Ontario: Facts and figures
54	351		2019. https://www.oltca.com/oltca/OLTCA/Public/LongTermCare/FactsFigures.aspx
55	352		(accessed January 9, 2020).
56 57			
58			
59			13

1			
2 3 4 5	353 354	[46]	Ali M, MacIsaac R, Quinn TJ, Bath PM, Veenstra DL, Xu Y, et al. Dependency and health utilities in stroke: Data to inform cost-effectiveness analyses. Eur Stroke J
6 7 8	355 356 357	[47]	2017;2:70–6. doi:10.1177/2396987316683780. Polinder S, Boyé NDA, Mattace-Raso FUS, Van der Velde N, Hartholt KA, De Vries OJ, et al. Cost-utility of medication withdrawal in older fallers: results from the improving
9 10	358 359		medication prescribing to reduce risk of FALLs (IMPROveFALL) trial. BMC Geriatr 2016:16:1–10. doi:10.1186/s12877-016-0354-7
11 12	360 361	[48]	Ganz DA, Bao Y, Shekelle PG, Rubenstein LZ. Will my patient fall? J Am Med Assoc
13 14 15	362 363	[49]	Weitz JI, Semchuk W, Turpie AGG, Fisher WD, Kong C, Ciaccia A, et al. Trends in Prescribing Oral Anticoagulants in Canada 2008-2014 Clin Ther 2015;37:2506-2514 e4
15 16 17	364 365	[50]	doi:10.1016/j.clinthera.2015.09.008.
18 19	366	[30]	Concentrations with Lower than Recommended Dosing in Older Adults with Atrial
20 21	367 368		Fibrillation. J Am Geriatr Soc 2019;67:1902–6. doi:10.1111/jgs.15982.
22 23			
24 25 26			
27 28			
29 30			
31 32 33			
34 35			
36 37			
38 39 40			
40 41 42			
43 44			

Figure 1: Model structure.

Figure 2: Health states and possible transitions.

Figure 3: Average cost-effectiveness plane. The cost and effectiveness of each medication were plotted. Medications that were lower in cost (y-axis) and higher in effectiveness (x-axis) were more cost-effective. Warfarin (red circle) was dominated by extension (beige line) by the combination of apixaban (asterisk) and ASA (blue circle). QALY = quality-adjusted life years.

Table 1: Baseline characteristics simulated in the model. SD = standard deviation, CHADS =

stroke risk sco	ore, HAS-BLED	= bleeding risk sc
Age in years,	78.3 (5.1)	
mean (SD)		
Female	51%	
	HAS-BLED [†]	
CHADS*	HAS-BLED† Low <3	High ≥3
CHADS* Low <3	HAS-BLED [†] Low <3 0.58	High ≥3 0.19

*CHADS: congestive heart failure, hypertension, age \geq 75, diabetes, and stroke.

[†]HAS-BLED: hypertension, abnormal renal and liver function, stroke, bleeding, labile international normalized ratio, elderly (age >65), drugs or alcohol (\geq 8 drinks/week).

	Estimate (range)	Distribution	Reference
Frodadinities	0.32 (0.27, 0.37)	Bata	[15]
Filst Idli Subsequent fall	0.52(0.27-0.57) 0.58(0.20, 0.07)	Beta	[15]
Subsequent fail	(0.38(0.39-0.97))	Deta La su a ma al	[15]
Any blood HAS DIED low annual	1.39(1.05-1.84) 0.166(0.111, 0.221)	Lognormal	[33]
Any bleed – HAS-BLED low, annual	0.100(0.111-0.221)	Bela	[14]
Any bleed – HAS-BLED high, annual	0.091(0.061-0.121)	Beta	[14]
bleed	0.31 (0.25–0.46)	Beta	[30]
Intracranial bleed given major bleed	0.21 (0.14–0.28)	Beta	[37]
Bedbound after intracranial bleed (modified Rankin scale >5)	0.176 (0.117–0.235)	Beta	[38]
Any stroke – CHADS low	0.083 (0.055-0.111)	LogNormal	[39]
Any stroke – CHADS high	0.037(0.025-0.049)	LogNormal	[39]
Major stroke given a stroke	0.41 (0.20-0.61)	Beta	[40]
Bedbound after major stroke (modified	0 176 (0 117–0 235)	Beta	[41]
Rankin scale >5)	0.170 (0.117 0.200)	2000	[]
OR death due to atrial fibrillation	1.6(1.2-2.2)	Lognormal	[42]
HR death after major stroke	529(353-793)	Lognormal	[43]
HR death after major bleed	3 35 (2.12–5.27)	Lognormal	[43]
HR death given bedbound	3 81 (3 37-4 31)	Lognormal	[44]
		Loghornia	[]
Costs (C\$ 2018 values)			
Fall, single event	7,286.01 (5,464.51-9,107.51)	Gamma	[29]
Major bleed, initial event	5,358.98 (3,572.64-7,145.28)	Gamma	[30]
Major bleeding, monthly	6,942.54 (4,627.99-9,255.99)	Gamma	[30]
Minor bleed, single event	84.38 (55.89–111.78)	Gamma	[30]
Major stroke, initial event	7,227.47 (3,613.74–14,441.79)	Gamma	30
Major stroke monthly	6,476.51 (4,384.7-8,768.31)	Gamma	[30]
Minor stroke, single event	3.613.74 (500.15-7.227.47)	Gamma	[30]
Bedbound (assume long-term care)	4,304.91 (2,869.94–5,739.88)	Gamma	[45]
Utilities/disutilities			
Atrial fibrillation	0.95 (0.93–0.98)	Beta	[46]
Fall, per event*	-0.11 (-0.08 to -0.14)	Beta	[47]
Major bleed, long term	0.60 (0.40–0.80)	Beta	[34]
Minor bleed, 1 month*	-0.13 (-0.08 to -0.13)	Beta	[34]
Major stroke, first year	0.26 (0.20-0.50)	Beta	[34]
Major stroke, long term	0.71 (0.40-0.96)	Beta	[34]
Minor stroke, first year*	-0.25 (-0.15 to -0.25)	Beta	[34]
Bedbound (Rankin ≥ 5)	0.14 (-0.01 to 0.29)	Beta	[46]
*Disutilities	. ,		

Table 2: Probabilities, costs and utilities for the decision model. HR = hazard ratio, HAS-BLED^{*} = bleeding risk score CHADS^{*} = stroke risk score OP = odds ratio

*CHADS: congestive heart failure, hypertension, age \geq 75, diabetes, and stroke.

[†]HAS-BLED: hypertension, abnormal renal and liver function, stroke, bleeding, labile international normalized ratio, elderly (age >65), drugs or alcohol (\geq 8 drinks/week).

	Od	Odds ratio (95% confidence interval [CI])					
Compared to	Any bleed	Any stroke	Death	Cost per			
warfarin				month (C\$)			
ASA*	0.59 (0.45–0.77)	1.88 (1.40–2.51)	1.04 (0.88–1.33)	1.02			
Apixaban*	0.67 (0.60–0.75)	0.79 (0.66–0.94)	0.88 (0.79–0.98)	98.02			
Dabigatran*	1.56 (0.50–5.74)	0.65 (0.52–0.81)	0.88 (0.77–1.01)	100.32			
Edoxaban*	0.84 (0.77–0.90)	0.86 (0.74–1.01)	0.86 (0.82–1.01)	112.00			
Rivaroxaban*	1.03 (0.95–1.11)	0.88 (0.74–1.03)	0.83 (0.69–1.00)	86.10			
Warfarin	1	1	1	39.45†			
Off medications‡	0.77 (0.34–1.20)	1.47 (1.29–1.65)	3.03 (2.79–3.27)				

Table 3: Efficacy and cost variables for antithrombotic medications. C\$ = Canadian dollars in 2018 value.

*Ref. [10]

‡Relative risks (95% CI). Ref. [3]

[†]Including cost of monitoring therapy [32]

Table 4: Cost-effectiveness ranking of the 6 different medications. Warfarin is dominated by extension by the combination of ASA and apixaban, while edoxaban, rivaroxaban and dabigatran are absolutely dominated by apixaban. All values are means with 95% confidence intervals. QALY = quality-adjusted life year, ICER = incremental cost-effectiveness ratio.

Drug	Cost	Δ Cost	QALY	Δ QALY	ICER	
ASA	86,197 (85,787– 86,607)	-	4.98 (4.98–4.99)	-	-	
Warfarin	90,338 (89,909– 90,766)	4,141 (3,548– 4,734)	5.14 (5.13–5.14)	0.15 (0.14–0.16)	27,088 (26,495– 27,681)	Ext. dominated
Apixaban	94,304 (93,885– 94,723)	3,966 (3,367– 4,566)	5.92 (5.92–5.93)	0.79 (0.78–0.80)	5,036 (4,437– 5,635)	Cost-effective
Edoxaban	102,631 (102,175– 103,088)	8,327 (7,708– 8,947)	5.73 (5.72–5.74)	-0.19 (-0.20 to -0.18)	-42,963 (-43,583 to - 42,343)	Abs. dominated
Rivaroxaban	108,170 (107,645– 108,696)	13,866 (13,194– 14,538)	5.58 (5.57–5.59)	-0.34 (-0.35 to -0.33)	-40,345 (-41,017 to -39,673)	Abs. dominated
Dabigatran	114,762 (114,108– 115,417)	20,459 (19,682– 21,236)	5.03 (5.02–5.04)	-0.90 (-0.91 to -0.88	-22,787 (-23,564 to -22,010)	Abs. dominated

	Life years (not adjusted for utility)	Life expectancy (years)	Major strokes (cumulative %)	Major bleeds (cumulative %)	Months off medication (average per patient)	Bedbound (cumulative %)
ASA	6.38	84.5	26.5	15.0	1.19	4.8
	(6.37–6.39)	(84.4–84.5)	(26.4–26.6)	(14.9–15.0)	(1.19–1.19)	(4.7–4.8)
Warfarin	6.65	84.7	14.3	25.9	2.08	2.7
	(6.64–6.66)	(84.7–84.7)	(14.2–14.4)	(25.9–26.0)	(2.08–2.09)	(2.7–2.7)
Apixaban	7.46	85.5	12.7	19.8	1.60	2.4
	(7.45–7.47)	(85.5–85.5)	(12.6–12.7)	(19.7–19.8)	(1.60–1.60)	(2.4–2.4)
Edoxaban	7.36	85.4	13.6	24.3	1.97	2.6
	(7.35–7.37)	(85.4–85.4)	(13.6–13.7)	(24.2–24.3)	(1.96–1.97)	(2.6–2.6)
Rivaroxaban	7.31	85.4	13.9	29.4	2.39	2.7
	(7.31–7.33)	(85.4–85.4)	(13.8–14.0)	(29.3–29.5)	(2.38–2.40)	(2.7–2.7)
Dabigatran	6.87	84.9	9.6	42.8	3.49	2.1
	(6.86–6.89)	(84.9–85.0)	(9.5–9.7)	(42.6–43.1)	(3.47–3.51)	(2.0–2.1)

Table 5: Life years and secondary outcomes from the model. All values are means with 95% confidence intervals.

(6.86-6.89) (84.9-85.0) (9.5-9.7) (42.6-43.1) (3.47-3.51) (2.0-2.

 Supplementary appendix: Cost-effectiveness of antithrombotic agents for atrial fibrillation in older adults at risk of falls

Supplementary appendix

Appendix S1: Model probabilities, cost and utilities

A targeted literature search (MEDLINE) was completed to obtain baseline probabilities and utilities for events related to stroke, bleeding and falls (Table S1). The baseline mortality rate for each age was derived from Statistics Canada Ontario life tables [1]. Appropriate distributions were created for each variable for outer-loop sampling.

The model utilized sampled patient characteristics and the validated CHADS2 [2] and the HAS-BLED [3] scoring tools to determine an individual's initial risks for stroke and bleeding while in the 'Alive' state. Patients were dichotomized into either high- or low-risk in both the CHADS2 and the HAS-BLED scores using \geq 3 as cutoff for both scores. Four risk categories were created using the initial risk scores (main text Table 2), with proportions in each risk group determined from a published cohort [4]. In the 'Alive' state, patients could continue to cycle through with the possibility of dying, having a fall, or developing a stroke or a bleed. If they developed a stroke or bleed, it was stratified into a major or minor event. A major stroke or bleed was associated with a risk of permanent severe neurologic injury, defined by modified Rankin score of 5 [5,6]. Individuals with a Rankin score of 5 were transitioned to the bedbound health state, but they could experience further strokes and bleeds. Any stroke led to increased future stroke risk by increasing the CHAD2 category. Major bleeds also increased future bleeding risk (higher HAS-BLED score), but minor bleeds did not change the HAS-BLED status.

The probability of first and subsequent falls was based on the Tinetti falls cohort [7]. Each fall led to an increased risk of major bleeding, with a hazard ratio derived from an AF clinical trial that captured falls data [8]. The efficacy estimates (stroke, bleed, mortality odds ratios) for each medication are derived from a network meta-analysis (Table S1) [9]. The odds of bleeding, stroke and death of no treatment compared with warfarin was derived from a 1994 meta-analysis of the original warfarin trials for AF [10]. The no-treatment estimate was used during the period off medication after a major bleed.

Cost data was based on a previous decision analysis that utilized Canadian costs from 2013 [11]. We adjusted for inflation to 2018 values using the Bank of Canada Consumer Price Index [12]. Similarly, costs related to falls were obtained from a Canadian publication from 2009 and updated to 2018 values [13]. We also obtained costs of medications (main text Table 3) from the Ontario Drug Benefit Formulary (ODB) [14] and the St. Michael's Hospital (Toronto, Canada) outpatient pharmacy (personal communication). Indirect costs of warfarin therapy including blood monitoring and clinic visits were accounted for [15] with all costs being reported in Canadian dollars (C\$). The cost of the bedbound health state was defined as requiring long-term care, and the amount paid by the Ministry of Health and Long-Term Care per month was used [16].

Utilities were derived from published estimates (Table S1). All individuals entering the cohort began with the utility of having AF [17]. The utility of stroke or bleed was factored into the

Supplementary appendix: Cost-effectiveness of antithrombotic agents for atrial fibrillation in older adults at risk of falls

existing utility when those events occurred. Minor stroke, minor bleed, or a fall was associated with a disutility for a defined period of time, but not permanently.

Table S1: Full variable set including distributions and sampling iteration. Log normal distribution parameters were mean of logs and standard deviation of logs. IL = inner loop (first

order), OL = outer loop (second order), μ = mean, σ = standard deviation, HR = hazard ratio, OR = odds ratio.

	Sampled iterations	Distribution parameters	Reference
Baseline characteristics			
Starting age	IL	Normal (μ =78.3, σ =5.1)	[7]
Sex female	IL	Uniform (<0.51)	[7]
Start CHADS/HAS-BLED profile	IL	Uniform (0-0.58, 0.58-0.77, 0.77-0.89, 0.89-1)	[4]
Probabilities			
First fall	IL	Beta (μ =0.32, σ =0.025)	[7]
Subsequent fall	IL	Beta (μ=0.58, σ=0.097)	[7]
HR of bleed after a fall	OL	LogNormal (μ=0.329, σ=0.122)	[8]
Any bleed – HAS-BLED low, annual	IL	Beta (μ =0.166, σ =0.055)	[3]
Any bleed – HAS-BLED high, annual	IL	Beta (μ=0.091, σ=0.030)	[3]
Major bleed given any anticoagulant bleed	OL	Beta (μ=0.31, σ=0.03)	[18]
Intracranial bleed given major bleed	OL	Beta (μ =0.21, σ =0.07)	[19]
Bedbound after intracranial bleed (modified Rankin scale >5)	IL	Beta (μ=0.176, σ=0.059)	[6]
Any stroke – CHADS low	IL	LogNormal (μ =-3.297, σ =0.325)	[20]
Any stroke – CHADS high	IL	LogNormal (μ =-2.489, σ =0.325)	[20]
Major stroke given a stroke	OL	Beta (μ =0.41, σ =0.11)	[21]
Bedbound after major stroke (modified Rankin scale >5)	IL	Beta (μ=0.176, σ=0.059)	[5]
OR death due to atrial fibrillation	OL	Lognormal ($\mu=0.470, \sigma=0.125$)	[22]
HR death after major stroke	OL	Lognormal (μ =1.666, σ =0.246)	[23]
HR death after major bleed	OL	Lognormal (μ =1.209, σ =0.281)	[23]
HR death given bedbound	OL	Lognormal (μ =1.337, σ =0.125)	[24]
Costs (C\$ 2018 values)			
Fall, single event	OL	Gamma (μ =7,286.01, σ =2,428.67)	[13]
Major bleed, initial event	OL	Gamma (μ=5,358.98, σ=1,786.33)	[11]
Major bleeding, monthly	OL	Gamma (μ=6,942.54, σ=2,314.18)	[11]
Minor bleed, single event	OL	Gamma (μ=84.38, σ=28.13)	[11]
Major stroke, initial event	OL	Gamma (μ=7,227.47, σ=2,409.16)	[11]
Major stroke monthly	OL	Gamma (μ=6,476.51, σ=2,158.84)	[11]
Minor stroke, single event	OL	Gamma (μ=3,613.74, σ=1,204.58)	[11]
Bedbound (assume long-term care)	OL	Gamma (μ=4,304.91, σ=1,434.97)	[16]
Utilities/disutilities			
Atrial fibrillation	<u>IL</u>	Beta (μ =0.95, σ =0.02)	[25]
Fall, per event*		Beta (μ =-0.11, σ =0.04)	[26]
Major bleed, long term		Beta (μ =0.31, σ =0.03)	[17]
Minor bleed, 1 month*		Beta (μ =0.21, σ =0.07)	[17]
Major stroke, first year		Beta (μ =0.176, σ =0.059)	[17]
Major stroke, long term		LogNormal (μ =-3.297, σ =0.325)	[17]
Minor stroke, first year*		LogNormal (μ =-2.489, σ =0.325)	[17]
Bedbound (Rankın ≥5) *Disutilities	IL	Beta (μ =0.41, σ =0.11)	[25]

Supplementary appendix: Cost-effectiveness of antithrombotic agents for atrial fibrillation in older adults at risk of falls

Drug efficacy and safety			
ASA, OR any bleed	OL	LogNormal (μ =-0.528, σ =0.137)	[9]
ASA, OR any stroke	OL	LogNormal (μ=0.631, σ=0.149)	[9]
ASA, OR death	OL	LogNormal (μ=0.039, σ=0.105)	[9]
Apixaban, OR any bleed	OL	LogNormal (μ=-0.400, σ=0.057)	[9]
Apixaban, OR any stroke	OL	LogNormal (μ=-0.236, σ=0.090)	[9]
Apixaban, OR death	OL	LogNormal (μ=-0.128, σ=0.055)	[9]
Dabigatran, OR any bleed	OL	LogNormal (μ=0.445, σ=0.623)	[9]
Dabigatran, OR any stroke	OL	LogNormal (μ=-0.431, σ=0.113)	[9]
Dabigatran, OR death	OL	LogNormal (μ=-0.128, σ=0.069)	[9]
Edoxaban, OR any bleed	OL	LogNormal (μ=-0.174, σ=0.040)	[9]
Edoxaban, OR any stroke	OL	LogNormal (μ=-0.151, σ=0.079)	[9]
Edoxaban, OR death	OL	LogNormal (μ =-0.151, σ =0.053)	[9]
Rivaroxaban, OR any bleed	OL	LogNormal (μ=0.030, σ=0.040)	[9]
Rivaroxaban, OR any stroke	OL	LogNormal (μ=-0.128, σ=0.084)	[9]
Rivaroxaban, OR death	OL	LogNormal (μ =-0.186, σ =0.095)	[9]
Off medication, OR any bleed	OL	LogNormal (μ=-0.262, σ=0.325)	[10]
Off medication, OR any stroke	OL	LogNormal (μ=0.386, σ=0.117)	[10]
Off medication, OR death	OL	LogNormal (μ =1.109, σ =0.443)	[10]

Supplementary appendix: Cost-effectiveness of antithrombotic agents for atrial fibrillation in older adults at risk of falls

Appendix S2: Value of information (VOI) analysis

Residual uncertainty of the model was explored using VOI analysis [27]. The expected value with perfect information (EVPI) is derived from the difference of the model estimate and expected values with no uncertainty (perfect information). The EVPI was plotted against willingness to pay (WTP) in Figure S1. EVPI gives an estimate of opportunity costs (potentially lost costs) with the current level of evidence. If the cost of new evidence is less than the EVPI, then studies should be done to further reduce uncertainty in the model. In this model, the EVPI progressively decreases to near 0 as WTP approaches C\$50,000/QALY, suggesting that there is minimal uncertainty with the results found.

Supplementary appendix: Cost-effectiveness of antithrombotic agents for atrial fibrillation in older adults at risk of falls

Figure S2: Incremental cost-effectiveness plots for (A) apixaban vs. ASA and (B) apixaban vs. warfarin.

Supplementary appendix: Cost-effectiveness of antithrombotic agents for atrial fibrillation in older adults at risk of falls

Appendix S3: Model validation results

Using the prespecified variables, the model was shown to be externally valid. The cumulative number of falls in the model was 4.17 (95% confidence interval, CI 3.41–4.94) compared with 3.59 in a United States population-based cohort [28] and 6.57 in a Finnish geriatric community-dwelling cohort [29]. The cumulative number of falls was determined by multiplying the annual falls rate by the average life years from the model. The cumulative stroke risk in the model with ASA is 0.26 (0.13–0.40). The Framingham cohort estimates the cumulative stroke risk from age 75 to be 0.104 [30]. Adjusting for the presence of AF (relative risk, RR 3.3 from the Framingham cohort [31]) and the risk reduction with ASA (RR 0.64 [10]), the cumulative stroke risk is 0.22, which is similar to the model estimate. No calibration was required.

2 3

4 5

6

7

8

9

10

11 12

13

14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34 35

36

37

38

39

40

41 42

43

44

45

46

47

48

49

50 51

52

53

54

55

60

Supplementary appendix: Cost-effectiveness of antithrombotic agents for atrial fibrillation in older adults at risk of falls

References

- [1] StatCan. Life Tables, Canada, Provinces and Territories, 1980/1982 to 2014/2016. Ottawa, Canada: 2018.
- [2] Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for predicting stroke: Results from the National Registry of Atrial Fibrillation. J Am Med Assoc 2001;285:2864–70. doi:10.1001/jama.285.22.2864.
- [3] Apostolakis S, Lane DA, Guo Y, Buller H, Lip GYH. Performance of the HEMORR 2 HAGES, ATRIA, and HAS-BLED bleeding risk-prediction scores in patients with atrial fibrillation undergoing anticoagulation: The AMADEUS (Evaluating the use of SR34006 compared to warfarin or acenocoumarol in patients with atrial fibrillation) study. J Am Coll Cardiol 2012;60:861–7. doi:10.1016/j.jacc.2012.06.019.
- [4] Lopes RD, Al-Khatib SM, Wallentin L, Yang H, Ansell J, Bahit MC, et al. Efficacy and safety of apixaban compared with warfarin according to patient risk of stroke and of bleeding in atrial fibrillation: A secondary analysis of a randomised controlled trial. Lancet 2012;380:1749–58. doi:10.1016/S0140-6736(12)60986-6.
- [5] Olavarría V V., Brunser A, Cabral N, Martins S, Muñoz-Venturelli P, Cavada G, et al. The distribution of the modified Rankin scale scores change according to eligibility criteria in acute ischemic stroke trials: A consideration for sample size calculations when using ordinal regression analysis. Contemp Clin Trials Commun 2017;5:133–6. doi:10.1016/j.conctc.2017.01.008.
- [6] Asuzu D, Nystrom K, Amin H, Schindler J, Wira C, Greer D, et al. Modest association between the discharge modified rankin scale score and symptomatic intracerebral hemorrhage after intravenous thrombolysis. J Stroke Cerebrovasc Dis 2015;24:548–53. doi:10.1016/j.jstrokecerebrovasdis.2014.09.034.
- [7] Tinetti ME, Speechley M, Ginter SF. Risk Factors for Falls among Elderly Persons Living in the Community. N Engl J Med 1988;319:1701–7. doi:10.1056/NEJM198812293192604.
- [8] Rao MP, Vinereanu D, Wojdyla DM, Alexander JH, Atar D, Hylek EM, et al. Clinical Outcomes and History of Fall in Patients with Atrial Fibrillation Treated with Oral Anticoagulation: Insights From the ARISTOTLE Trial. Am J Med 2018;131:269-275.e2. doi:10.1016/j.amjmed.2017.10.036.
- [9] López-López JA, Sterne JAC, Thom HHZ, Higgins JPT, Hingorani AD, Okoli GN, et al. Oral anticoagulants for prevention of stroke in atrial fibrillation: Systematic review, network meta-Analysis, and cost effectiveness analysis. BMJ 2017;359. doi:10.1136/bmj.j5058.
- [10] Atrial Fibrillation Investigators. Risk Factors for Stroke and Efficacy of Antithrombotic Therapy in Atrial Fibrillation: Analysis of Pooled Data From Five Randomized Controlled Trials. Arch Intern Med 1994;154:1449–57. doi:10.1001/archinte.1994.00420130036007.
- [11] Singh SM, Micieli A, Wijeysundera HC. Economic evaluation of percutaneous left atrial appendage occlusion, dabigatran, and warfarin for stroke prevention in patients with nonvalvular atrial fibrillation. Circulation 2013;127:2414–23. doi:10.1161/CIRCULATIONAHA.112.000920.
- [12] Bank of Canada. Inflation Calculator n.d. https://www.bankofcanada.ca/rates/related/inflation-calculator/ (accessed January 9, 2020).
- [13] SMARTRISK. The Economic Burden of Injury in Canada. Toronto, Canada: 2009.
 - For Peer Review Only

Supplementary appendix: Cost-effectiveness of antithrombotic agents for atrial fibrillation in older adults at risk of falls

- [14] Ontario Drug Benefits Program. Ontario Drug Benefit Formulary/Comparative Drug Index 2019. https://www.formulary.health.gov.on.ca/formulary/ (accessed January 9, 2020).
- [15] Schulman S, Anderson DR, Bungard TJ, Jaeger T, Kahn SR, Wells P, et al. Direct and indirect costs of management of long-term warfarin therapy in Canada. J Thromb Haemost 2010;8:2192–200. doi:10.1111/j.1538-7836.2010.03989.x.
- [16] Ontario Long Term Care Association. About long-term care in Ontario: Facts and figures 2019. https://www.oltca.com/oltca/OLTCA/Public/LongTermCare/FactsFigures.aspx (accessed January 9, 2020).
- [17] Tengs TO, Wallace A. One thousand health-related quality-of-life estimates. Med Care 2000;38:583–637. doi:10.1097/00005650-200006000-00004.
- [18] Bahit MC, Lopes RD, Wojdyla DM, Held C, Hanna M, Vinereanu D, et al. Non-major bleeding with apixaban versus warfarin in patients with atrial fibrillation. Heart 2017;103:623–8. doi:10.1136/heartjnl-2016-309901.
- [19] Granger CB, Alexander JH, McMurray JJV, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981– 92. doi:10.1056/NEJMoa1107039.
- [20] Van Staa TP, Setakis E, Di Tanna GL, Lane DA, Lip GYH. A comparison of risk stratification schemes for stroke in 79 884 atrial fibrillation patients in general practice. J Thromb Haemost 2011;9:39–48. doi:10.1111/j.1538-7836.2010.04085.x.
- [21] Acciarresi M, Paciaroni M, Agnelli G, Falocci N, Caso V, Becattini C, et al. Prestroke CHA2DS2-VASc Score and Severity of Acute Stroke in Patients with Atrial Fibrillation: Findings from RAF Study. J Stroke Cerebrovasc Dis 2017;26:1363–8. doi:10.1016/j.jstrokecerebrovasdis.2017.02.011.
- [22] Benjamin EJ, Wolf PA, D'Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: The Framingham Heart Study. Circulation 1998;98:946–52. doi:10.1161/01.CIR.98.10.946.
- [23] De Caterina R, Connolly SJ, Pogue J, Chrolavicius S, Budaj A, Morais J, et al. Mortality predictors and effects of antithrombotic therapies in atrial fibrillation: Insights from ACTIVE-W. Eur Heart J 2010;31:2133–40. doi:10.1093/eurheartj/ehq250.
- [24] Eriksson M, Norrving B, Terént A, Stegmayr B. Functional outcome 3 months after stroke predicts long-term survival. Cerebrovasc Dis 2008;25:423–9. doi:10.1159/000121343.
- [25] Ali M, MacIsaac R, Quinn TJ, Bath PM, Veenstra DL, Xu Y, et al. Dependency and health utilities in stroke: Data to inform cost-effectiveness analyses. Eur Stroke J 2017;2:70–6. doi:10.1177/2396987316683780.
- [26] Polinder S, Boyé NDA, Mattace-Raso FUS, Van der Velde N, Hartholt KA, De Vries OJ, et al. Cost-utility of medication withdrawal in older fallers: results from the improving medication prescribing to reduce risk of FALLs (IMPROveFALL) trial. BMC Geriatr 2016;16:1–10. doi:10.1186/s12877-016-0354-7.
- [27] Wilson ECF. A Practical Guide to Value of Information Analysis. Pharmacoeconomics 2015;33:105–21. doi:10.1007/s40273-014-0219-x.
- [28] Verma SK, Willetts JL, Corns HL, Marucci-Wellman HR, Lombardi DA, Courtney TK. Falls and fall-related injuries among community-dwelling adults in the United States. PLoS One 2016;11. doi:10.1371/journal.pone.0150939.
- [29] Iinattiniemi S, Jokelainen J, Luukinen H. Falls risk among a very old home-dwelling population. Scand J Prim Health Care 2009;27:25–30. doi:10.1080/02813430802588683.

1

Supplementary appendix: Cost-effectiveness of antithrombotic agents for atrial fibrillation in older adults at risk of falls

- [30] Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, et al. The lifetime risk of stroke: estimates from the Framingham Study. Stroke 2006;37:345–50. doi:10.1161/01.STR.0000199613.38911.b2.
- [31] Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: The framingham study. Stroke 1991;22:983–8. doi:10.1161/01.STR.22.8.983.